Inhibition of cAMP-Activated Intestinal Chloride Secretion by Diclofenac: Cellular Mechanism and Potential Application in Cholera

نویسندگان

  • Pawin Pongkorpsakol
  • Nutthapoom Pathomthongtaweechai
  • Potjanee Srimanote
  • Sunhapas Soodvilai
  • Varanuj Chatsudthipong
  • Chatchai Muanprasat
چکیده

Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+)-K(+) ATPases and Na(+)-K(+)-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+) channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+)-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+)-activated basolateral K(+) channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+)-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal hypersecretion of Cl-.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of AMP-activated protein kinase by a plant-derived dihydroisosteviol in human intestinal epithelial cell.

Our previous study has shown that dihydroisosteviol (DHIS), a derivative of stevioside isolated from Stevia rebaudiana (Bertoni), inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial chloride secretion across monolayers of human intestinal epithelial (T84) cells and prevents cholera toxin-induced intestinal fluid secretion in mouse closed loop models. In ...

متن کامل

Biol. Pharm. Bull. 30(3) 502—507 (2007)

in the pathogenesis of secretory diarrhea. It is a passive process driven by the active secretion of ion, predominantly chloride. The cellular transport mechanism of intestinal chloride secretion is well defined. Chloride is taken up across the basolateral membrane via a Na /K /2Cl cotransporter (NKCC1) and exits across the apical membrane via cAMP-sensitive (CFTR) and calcium-sensitive (CaCC) ...

متن کامل

Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

BACKGROUND AND PURPOSE The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. EXPERIMENTAL APPROACH HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on fo...

متن کامل

Antidiarrheal Efficacy and Cellular Mechanisms of a Thai Herbal Remedy

Screening of herbal remedies for Cl(-) channel inhibition identified Krisanaklan, a herbal extract used in Thailand for treatment of diarrhea, as an effective antidiarrheal in mouse models of secretory diarrheas with inhibition activity against three Cl(-) channel targets. Krisanaklan fully inhibited cholera toxin-induced intestinal fluid secretion in a closed-loop mouse model with ∼50% inhibit...

متن کامل

Anti-diarrhoeal activity of a polyherbal formulation in rats and elucidation of its cellular mechanisms

Objective: The present study was aimed to study anti-diarrhoeal activity of a polyherbal formulation (PHF) in rats and elucidate its mechanism of action. Materials and Methods: Anti-diarrhoeal activity of PHF was investigated using castor oil-induced diarrhoea, small intestinal transit and enteropooling models in rats. PHF was tested at 75, 150 and 300 mg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014